

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Python bindings for CPL

The CPL recipe python interface

This is a non-official python module to access CPL recipes. It is not meant as
part of the CPL or the MUSE pipeline software, but may be useful for testing
and analysis.

See also

http://www.eso.org/sci/software/cpl

“The Common Pipeline Library (CPL) consists of a set of C libraries, which have
been developed to standardise the way VLT instrument pipelines are built, to
shorten their development cycle and to ease their maintenance. The Common
Pipeline Library was not designed as a general purpose image processing
library, but rather to address two primary requirements. The first of these
was to provide an interface to the VLT pipeline runtime- environment. The
second was to provide a software kit of medium-level tools, which allows
astronomical data-reduction tasks to be built rapidly.”
[ESO [http://www.eso.org/sci/software/cpl/introduction.html]]

	1. Installation
	1.1. Prequisites

	1.2. Binary packages

	1.3. Source code

	1.4. Compilation

	1.5. Test suite

	2. Tutorial
	2.1. Simple example

	2.2. Quick guide

	3. The Recipe interface
	3.1. Static members

	3.2. Constructor

	3.3. Common attributes and methods

	3.4. Recipe parameters

	3.5. Recipe frames

	3.6. Runtime environment

	3.7. Recipe invocation

	4. Parallel execution

	5. The cpl.Parameter class

	6. The cpl.FrameConfig class

	7. Execution results
	7.1. Result frames

	7.2. Run statistics

	7.3. Execution log

	7.4. Thread control

	7.5. CPL Exceptions

	8. Log messages
	8.1. Python style logging

	8.2. Log message lists

	9. cpl.esorex EsoRex legacy support
	9.1. Support for configuration and SOF files

	9.2. Convienence logging control

	10. cpl.dfs DFS header parsing

	11. Restrictions for CPL recipes
	11.1. Technical Background

Feedback

Bug reports should be made on the developer web page [http://github.com/olebole/python-cpl/issues]. Send python specific questions to
python-cpl@liska.ath.cx. Questions regading CPL should be mailed to
cpl-help@eso.org.

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

1. Installation

1.1. Prequisites

	Python [http://www.python.org/] 2.6 or higher,

	Astropy [http://www.astropy.org/] or
Pyfits [http://packages.python.org/pyfits/]

1.2. Binary packages

On Debian and debian-based systems (Ubuntu, Mint), python-cpl can be installed with the command

apt-get install python-cpl

Python CPL comes with the Ubuntu
distribution since 12.04. Debian packages are in Wheezy (Debian 7) [http://packages.debian.org/wheezy/python-cpl], Squeeze (Debian 8) [http://packages.debian.org/jessie/python-cpl], and Testing [http://packages.debian.org/testing/python-cpl]

1.3. Source code

	Python Package Index [http://pypi.python.org/pypi/python-cpl/]

	Git repository [http://github.com/olebole/python-cpl]. To access, do a:

git clone git://github.com/olebole/python-cpl.git

This gives you the current version in the subdirectory python-cpl.
To update to the current version of an existing repository, do a
git pull in the python-cpl directory.

For more detailed information, check the manual page of git(1)
and the github [http://github.com/olebole/python-cpl] page of the project.

1.4. Compilation

For compilation, a C compiler is needed additionally to the software mentioned
above.

The installation follows the standard procedure used in python. On default,
the installation path /usr/local. If using a non-standard installation
path, add the directory PREFIX/lib/python2.7/site-packages/
(lib64/python2.7/site-packages/ on 64 bit systems) to your environment
variable PYTHONPATH [http://docs.python.org/using/cmdline.html#envvar-PYTHONPATH] where where PREFIX is the installation
path for the package.

In the source directory of python-cpl, run

python setup.py install --prefix=PREFIX

There are other options available as well; use the --help option to
list them.

1.5. Test suite

There are a number of tests defined in test/TestRecipe.py:

python TestRecipe.py

The test recipe needs an installed CPL development environment.
The tests may print a memory corruption detection by glibc. This is normal,
since the tests also check this behaviour in the recipe.

Tests are also automatically buils by
Travis CI [https://travis-ci.org/olebole/python-cpl].

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

2. Tutorial

2.1. Simple example

The following code takes BIAS input file names from the command line and
writes the MASTER BIAS to the file name provided with the -o
option:

from optparse import OptionParser
import sys
import cpl

parser = OptionParser(usage='%prog files')
parser.add_option('-o', '--output', help='Output file', default='master_bias.fits')
parser.add_option('-b', '--badpix-table', help='Bad pixel table')

(opt, filenames) = parser.parse_args()
if not filenames:
 parser.print_help()
 sys.exit()

cpl.esorex.init()

muse_bias = cpl.Recipe('muse_bias')
muse_bias.param.nifu = 1
muse_bias.calib.BADPIX_TABLE = opt.badpix_table

res = muse_bias(filenames)
res.MASTER_BIAS.writeto(opt.output)

2.2. Quick guide

Input lines are indicated with “>>>” (the python prompt).
The package can be imported with

>>> import cpl

If you migrate from Esorex [http://www.eso.org/sci/software/cpl/esorex.html], you may just init the search path for CPL recipes
from the esorex startup:

>>> cpl.esorex.init()

Otherwise, you will need to explicitely set the recipe search path:

>>> cpl.Recipe.path = '/store/01/MUSE/recipes'

List available recipes:

>>> cpl.Recipe.list()
[('muse_quick_image', ['0.2.0', '0.3.0']),
 ('muse_scipost', ['0.2.0', '0.3.0']),
 ('muse_scibasic', ['0.2.0', '0.3.0']),
 ('muse_flat', ['0.2.0', '0.3.0']),
 ('muse_subtract_sky', ['0.2.0', '0.3.0']),
 ('muse_bias', ['0.2.0', '0.3.0']),
 ('muse_ronbias', ['0.2.0', '0.3.0']),
 ('muse_fluxcal', ['0.2.0', '0.3.0']),
 ('muse_focus', ['0.2.0', '0.3.0']),
 ('muse_lingain', ['0.2.0', '0.3.0']),
 ('muse_dark', ['0.2.0', '0.3.0']),
 ('muse_combine_pixtables', ['0.2.0', '0.3.0']),
 ('muse_astrometry', ['0.2.0', '0.3.0']),
 ('muse_wavecal', ['0.2.0', '0.3.0']),
 ('muse_exp_combine', ['0.2.0', '0.3.0']),
 ('muse_dar_correct', ['0.2.0', '0.3.0']),
 ('muse_standard', ['0.2.0', '0.3.0']),
 ('muse_create_sky', ['0.2.0', '0.3.0']),
 ('muse_apply_astrometry', ['0.2.0', '0.3.0']),
 ('muse_rebin', ['0.2.0', '0.3.0'])]

Create a recipe specified by name:

>>> muse_scibasic = cpl.Recipe('muse_scibasic')

By default, it loads the recipe with the highest version number. You may also
explicitely specify the version number:

>>> muse_scibasic = cpl.Recipe('muse_scibasic', version = '0.2.0')

List all parameters:

>>> print muse_scibasic.param
{'ybox': 40, 'passes': 2, 'resample': False, 'xbox': 15, 'dlambda': 1.25,
 'cr': 'none', 'thres': 5.8, 'nifu': 0, 'saveimage': True}

Set a parameter:

>>> muse_scibasic.param.nifu = 1

Print the value of a parameter (None [http://docs.python.org/library/constants.html#None] if the parameter is set to default)

>>> print muse_scibasic.param.nifu.value
1

List all calibration frames:

>>> print muse_scibasic.calib
{'TRACE_TABLE': None, 'MASTER_SKYFLAT': None, 'WAVECAL_TABLE': None,
 'MASTER_BIAS': None, 'MASTER_DARK': None, 'GEOMETRY_TABLE': None,
 'BADPIX_TABLE': None, 'MASTER_FLAT': None, 'GAINRON_STAT': None}

Set calibration frames with files:

>>> muse_scibasic.calib.MASTER_BIAS = 'MASTER_BIAS-01.fits'
>>> muse_scibasic.calib.MASTER_FLAT = 'MASTER_FLAT-01.fits'
>>> muse_scibasic.calib.TRACE_TABLE = 'TRACE_TABLE-01.fits'
>>> muse_scibasic.calib.GEOMETRY_TABLE = 'geometry_table.fits'

You may also set calibration frames with astropy.io.fits.HDUList
objects. This is especially useful if you want to change the file on the fly:

>>> import astropy.io.fits
>>> wavecal = astropy.io.fits.open('WAVECAL_TABLE-01_flat.fits')
>>> wavecal[1].data.field('wlcc00')[:] *= 1.01
>>> muse_scibasic.calib.WAVECAL_TABLE = wavecal

To set more than one file for a tag, put the file names and/or
astropy.io.fits.HDUList objects into a list:

>>> muse_scibasic.calib.MASTER_BIAS = ['MASTER_BIAS-%02i.fits' % (i+1)
... for i in range(24)]

To run the recipe, call it with the input file names as arguments. The product
frames are returned in the return value of the call. If you don’t specify an
input frame tag, the default (first) one of the recipe is used.

>>> res = muse_scibasic('Scene_fusion_1.fits')

Run the recipe with a nondefault tag (use raw data tag as argument name):

>>> res = muse_scibasic(raw = {'SKY':'sky_newmoon_no_noise_1.fits'})

Parameters and calibration frames may be changed for a specific call by
specifying them as arguments:

>>> res = muse_scibasic('Scene_fusion_1.fits', param = {'nifu': 2},
... calib = {'MASTER_FLAT': None,
... 'WAVECAL_TABLE': 'WAVECAL_TABLE_noflat.fits'})

The results of a calibration run are astropy.io.fits.HDUList objects.
To save them (use output tags as attributes):

>>> res.PIXTABLE_OBJECT.writeto('Scene_fusion_pixtable.fits')

They can also be used directly as input of other recipes.

>>> muse_sky = cpl.Recipe('muse_sky')
...
>>> res_sky = muse_sky(res.PIXTABLE_OBJECT)

If not saved, the output is usually lost! During recipe run, a temporary
directory is created where the astropy.io.fits.HDUList input objects
and the output files are put into. This directory is cleaned up afterwards.

To control message verbosity on terminal (use 'debug',
'info', 'warn', 'error' or 'off'):

>>> cpl.msg.esorex.level = 'debug'

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

3. The Recipe interface

	
class cpl.Recipe(name, filename=None, version=None, threaded=False)

	Pluggable Data Reduction Module (PDRM) from a ESO pipeline.

Recipes are loaded from shared libraries that are provided with the
pipeline library of the instrument. The module does not need to be
linked to the same library version as the one used for the compilation
of python-cpl. Currently, recipes compiled with CPL versions from 4.0
are supported. The list of supported versions is stored as
cpl.cpl_versions.

The libraries are searched in the directories specified by the class
attribute Recipe.path or its subdirectories. The search path is
automatically set to the esorex path when cpl.esorex.init()
is called.

3.1. Static members

	
Recipe.path = ['.']

	Search path for the recipes. It may be set to either a string, or to a
list of strings. All shared libraries in the search path and their
subdirectories are searched for CPL recipes. On default, the path is
set to the current directory.

The search path is automatically set to the esorex path when
cpl.esorex.init() is called.

	
Recipe.memory_mode = 0

	CPL memory management mode. The valid values are

	0

	Use the default system functions for memory handling

	1

	Exit if a memory-allocation fails, provide checking for memory leaks,
limited reporting of memory allocation and limited protection on
deallocation of invalid pointers.

	2

	Exit if a memory-allocation fails, provide checking for memory leaks,
extended reporting of memory allocation and protection on deallocation
of invalid pointers.

Note

This variable is only effective before the CPL library was
initialized. Even cpl.Recipe.list() initializes the library.
Therefore it is highly recommended to set this as the first action after
importing cpl.

	
static Recipe.list()

	Return a list of recipes.

Searches for all recipes in in the directory specified by the class
attribute Recipe.path or its subdirectories.

	
static Recipe.set_maxthreads(n)

	Set the maximal number of threads to be executed in parallel.

Note

This affects only threads that are started afterwards with
the threaded = True flag.

See also

Parallel execution

3.2. Constructor

	
Recipe.__init__(name, filename=None, version=None, threaded=False)

	Try to load a recipe with the specified name in the directory
specified by the class attribute Recipe.path or its
subdirectories.

	Parameters:	
	name (str [http://docs.python.org/library/functions.html#str]) – Name of the recipe. Required. Use
cpl.Recipe.list() to get a list of available recipes.

	filename (str [http://docs.python.org/library/functions.html#str]) – Name of the shared library. Optional. If not set,
Recipe.path is searched for the library file.

	version (int [http://docs.python.org/library/functions.html#int] or str [http://docs.python.org/library/functions.html#str]) – Version number. Optional. If not set, the newest
version is loaded.

	threaded (bool [http://docs.python.org/library/functions.html#bool]) – Run the recipe in the background, returning
immediately after calling it. Default is False. This may
be also set as an attribute or specified as a parameter when
calling the recipe.

3.3. Common attributes and methods

These attributes and methods are available for all recipes.

	
Recipe.__name__

	Recipe name.

	
Recipe.__file__ = None

	Shared library file name.

	
Recipe.__author__

	Author name

	
Recipe.__email__

	Author email

	
Recipe.__copyright__

	Copyright string of the recipe

	
Recipe.description

	Pair (synopsis, description) of two strings.

	
Recipe.version

	Pair (versionnumber, versionstring) of an integer and a string.
The integer will be increased on development progress.

	
Recipe.cpl_version

	Version of the CPL library that is linked to the recipe,
as a string

	
Recipe.cpl_description

	Version numbers of CPL and its libraries that were linked to
the recipe, as a string.

	
Recipe.output_dir

	Output directory if specified, or None [http://docs.python.org/library/constants.html#None]. The recipe will write the
output files into this directory and return their file names. If the
directory does not exist, it will be created before the recipe is
executed. Output files within the output directory will be silently
overwritten. If no output directory is set, the recipe call will result in
astropy.io.fits.HDUList result objects. The output directory may
be also set as parameter in the recipe call.

	
Recipe.temp_dir

	Base directory for temporary directories where the recipe is executed. The
working dir is created as a subdir with a random file name. If set to
None [http://docs.python.org/library/constants.html#None], the system temp dir is used. Defaults to '.'.

	
Recipe.threaded

	Specify whether the recipe should be executed synchroniously or as
an extra process in the background.

See also

Parallel execution

	
Recipe.tag

	Default tag when the recipe is called. This is set automatically
only if the recipe provided the information about input
tags. Otherwise this tag has to be set manually.

	
Recipe.tags

	Possible tags for the raw input frames, or ‘None [http://docs.python.org/library/constants.html#None] if this
information is not provided by the recipe.

	
Recipe.output

	Return a dictionary of output frame tags.

Keys are the tag names, values are the corresponding list of output
tags. If the recipe does not provide this information, an exception is
raised.

	
Recipe.memory_dump

	If set to 1, a memory dump is issued to stdout if the memory was
not totally freed after the execution. If set to 2, the dump is always
issued. Standard is 0: nothing dumped.

3.4. Recipe parameters

Recipe parameters may be set either via the Recipe.param attribute or
as named keywords on the run execution. A value set in the recipe call will
overwrite any value that was set previously in the Recipe.param
attribute for that specific call.

	
Recipe.param

	This attribute contains all recipe parameters.
It is iteratable and then returns all individual parameters:

>>> for p in muse_scibasic.param:
... print p.name, p.value, p.default
...
nifu None 99
cr None dcr
xbox None 15
ybox None 40
passes None 2
thres None 4.5
sample None False
dlambda None 1.2

On interactive sessions, all parameter settings can be easily printed by
printing the param attribute of the recipe:

>>> print muse_scibasic.param
 [Parameter('nifu', default=99), Parameter('cr', default=dcr),
 Parameter('xbox', default=15), Parameter('ybox', default=40),
 Parameter('passes', default=2), Parameter('thres', default=4.5),
 Parameter('sample', default=False), Parameter('dlambda', default=1.2)]

To set the value of a recipe parameter, the value can be assigned to
the according attribute:

>>> muse_scibasic.param.nifu = 1

The new value is checked against parameter type, and possible value
limitations provided by the recipe. Hyphens in parameter names are
converted to underscores. In a recipe call, the same parameter can be
specified as dict [http://docs.python.org/library/stdtypes.html#dict]:

>>> res = muse_scibasic(..., param = {'nifu':1})

To reset a value to its default, it is either deleted, or set to
None [http://docs.python.org/library/constants.html#None]. The following two lines:

>>> muse_scibasic.param.nifu = None
>>> del muse_scibasic.param.nifu

will both reset the parameter to its default value.

All parameters can be set in one step by assigning a dict [http://docs.python.org/library/stdtypes.html#dict] to
the parameters. In this case, all values that are not in the map are
reset to default, and unknown parameter names are ignored. The keys of
the map may contain contain the name or the fullname with context:

>>> muse_scibasic.param = { 'nifu':1, 'xbox':11, 'resample':True }

See also

cpl.Parameter

3.5. Recipe frames

There are three groups of frames: calibration (“calib”) frames, input (“raw”)
frames, and result (“product”) frames. Calibration frames may be set either
via the Recipe.calib attribute or as named keywords on the run
execution. A value set in the recipe call will overwrite any value that was
set previously in the Recipe.calib attribute for that specific
call. Input frames are always set in the recipe call. If their tag name was
not given, the tag name from Recipe.tag is used if the recipe provides
it.

	
Recipe.calib

	This attribute contains the calibration frames
for the recipe. It is iterable and then returns all calibration frames:

>>> for f in muse_scibasic.calib:
... print f.tag, f.min, f.max, f.frames
TRACE_TABLE 1 1 None
WAVECAL_TABLE 1 1 None
MASTER_BIAS 1 1 master_bias_0.fits
MASTER_DARK None 1 None
GEOMETRY_TABLE 1 1 None
BADPIX_TABLE None None ['badpix_1.fits', 'badpix_2.fits']
MASTER_FLAT None 1 None

Note

Only MUSE recipes are able to provide the full list of
calibration frames and the minimal/maximal number of calibration
frames. For other recipes, only frames that were set by the users are
returned here. Their minimum and maximum value will be set to
None [http://docs.python.org/library/constants.html#None].

In order to assing a FITS file to a tag, the file name or the
astropy.io.fits.HDUList is assigned to the calibration
attribute:

>>> muse_scibasic.calib.MASTER_BIAS = 'MASTER_BIAS_0.fits'

Using astropy.io.fits.HDUList is useful when it needs to be
patched before fed into the recipe.

>>> master_bias = astropy.io.fits.open('MASTER_BIAS_0.fits')
>>> master_bias[0].header['HIERARCH ESO DET CHIP1 OUT1 GAIN'] = 2.5
>>> muse_scibasic.calib.MASTER_BIAS = master_bias

Note that astropy.io.fits.HDUList objects are stored in
temporary files before the recipe is called which may produce some
overhead. Also, the CPL then assigns the random temporary file names
to the FITS keywords HIERARCH ESO PRO RECm RAWn NAME which should
be corrected afterwards if needed.

To assign more than one frame, put them into a list:

>>> muse_scibasic.calib.BADPIX_TABLE = ['badpix1.fits', 'badpix2.fits']

All calibration frames can be set in one step by assigning a
dict [http://docs.python.org/library/stdtypes.html#dict] to the parameters. In this case, frame that are not in
the map are set are removed from the list, and unknown frame tags are
silently ignored. The key of the map is the tag name; the values are
either a string, or a list of strings, containing the file name(s) or
the astropy.io.fits.HDUList objects.

>>> muse_scibasic.calib = { 'MASTER_BIAS':'master_bias_0.fits',
... 'BADPIX_TABLE':['badpix_1.fits', 'badpix_2.fits'] }

In a recipe call, the calibration frame lists may be overwritten by
specifying them in a dict [http://docs.python.org/library/stdtypes.html#dict]:

>>> res = muse_scibasic(..., calib = {'MASTER_BIAS':'master_bias_1.fits'})

See also

cpl.FrameConfig

3.6. Runtime environment

For debugging purposes, the runtime environment of the recipe may be
changed. The change may be either done by specifying the Recipe.env
attribute of as a parameter on the recipe invocation. The change will have no
influence on the environment of the framework itself.

Note

Some variables are only read on startup
(like MALLOC_CHECK_), changing or deleting them will have
no effect.

	
Recipe.env = None

	Environment changes for the recipe. This is a dict [http://docs.python.org/library/stdtypes.html#dict] with
the name of the environment variable as the key and the content as the
value. It is possible to overwrite a specific environment
variable. Specifying None [http://docs.python.org/library/constants.html#None] as value will remove the variable:

>>> muse_flat.env['MUSE_RESAMPLE_LAMBDA_LOG'] = '1'
>>> muse_flat.env['MUSE_TIMA_FILENAME'] = 'tima.fits'

In a recipe call, the runtime environment may be overwritten as well:

>>> res = muse_flat(..., env = {'MUSE_PLOT_TRACE':'true'})

3.7. Recipe invocation

	
Recipe.__call__(*data, **ndata)

	Call the recipes execution with a certain input frame.

	Parameters:	
	raw (astropy.io.fits.HDUlist or str [http://docs.python.org/library/functions.html#str] or a
list of them, or dict [http://docs.python.org/library/stdtypes.html#dict]) – Data input frames.

	tag (str [http://docs.python.org/library/functions.html#str]) – Overwrite the tag attribute (optional).

	threaded (bool [http://docs.python.org/library/functions.html#bool]) – overwrite the threaded attribute (optional).

	loglevel (int [http://docs.python.org/library/functions.html#int]) – set the log level for python logging [http://docs.python.org/library/logging.html#module-logging] (optional).

	logname (str [http://docs.python.org/library/functions.html#str]) – set the log name for the python
logging.Logger [http://docs.python.org/library/logging.html#logging.Logger] (optional, default is ‘cpl.’ + recipename).

	output_dir (str [http://docs.python.org/library/functions.html#str]) – Set or overwrite the output_dir attribute.
(optional)

	param (dict [http://docs.python.org/library/stdtypes.html#dict]) – overwrite the CPL parameters of the recipe specified
as keys with their dictionary values (optional).

	calib (dict [http://docs.python.org/library/stdtypes.html#dict]) – Overwrite the calibration frame lists for the tags
specified as keys with their dictionary values (optional).

	env (dict [http://docs.python.org/library/stdtypes.html#dict]) – overwrite environment variables for the recipe call
(optional).

	Returns:	The object with the return frames as
astropy.io.fits.HDUList objects

	Return type:	cpl.Result

	Raise:	exceptions.ValueError [http://docs.python.org/library/exceptions.html#exceptions.ValueError] If the invocation parameters
are incorrect.

	Raise:	exceptions.IOError [http://docs.python.org/library/exceptions.html#exceptions.IOError] If the temporary directory could
not be built, the recipe could not start or the files could not
be read/written.

	Raise:	cpl.CplError If the recipe returns an error.

	Raise:	cpl.RecipeCrash If the CPL recipe crashes with a
SIGSEV or a SIGBUS

Note

If the recipe is executed in the background
(threaded = True) and an exception occurs, this exception is
raised whenever result fields are accessed.

See also

Parallel execution

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

4. Parallel execution

The library allows a simple parallelization of recipe processing. The
parallelization is done using independent processes and thus does not depend
on parallelization features in the CPL or the recipe implementation.

To specify that a recipe should be executed in the background, the
threaded attribute needs to be set to True [http://docs.python.org/library/constants.html#True]. This may be done
either in the recipe constructor, as a recipe attribute or as a parameter of
the execution call. Each of the following three recipes will start a
background process for the BIAS calculation:

Create a threaded recipe
r1 = cpl.Recipe('muse_bias', threaded = True)
result1 = r1(['bias1.fits', 'bias2.fits', 'bias3.fits'])

Prepare a recipe for background execution
r2 = cpl.Recipe('muse_bias')
r2.threaded = True
result2 = r2(['bias1.fits', 'bias2.fits', 'bias3.fits'])

Execute a recipe in background
r3 = cpl.Recipe('muse_bias')
result3 = r3(['bias1.fits', 'bias2.fits', 'bias3.fits'], threaded = True)

If the threaded attribute is set to True [http://docs.python.org/library/constants.html#True], the execution call
of the recipe immediately returns while the recipe is executed in the
background. The current thread is stopped only if any of the results of the
recipe is accessed and the recipe is still not finished.

The result frame of a background recipe is a subclass of
threading.Thread [http://docs.python.org/library/threading.html#threading.Thread]. This interface may be used to control the thread
execution.

The simples way to use parallel processing is to create a list where the
members are created by the execution of the recipe. The following example
shows the parallel execution of the ‘muse_focus’ recipe:

muse_focus = cpl.Recipe('muse_focus', threaded = True)
muse_focus.calib.MASTER_BIAS = 'master_bias.fits'

Create a list of input files
files = ['MUSE_CUNGC%02i.fits' % i for i in range(20, 30)]

Create a list of recipe results. Note that for each entry, a background
process is started.
results = [muse_focus(f) for f in files]

Save the results. The current thread is stopped until the according
recipe is finished.
for i, res in enumerate(results):
 res.FOCUS_TABLE.writeto('FOCUS_TABLE_%02i.fits' % (i+1))

When using parallel processing note that the number of parallel processes is
not limited by default, so this feature may produce a high load when called
with a large number of processes. Parallelization in the recipe itself or in
the CPL may also result in additional load.

To limit the maximal number of parallel processes, the function
cpl.Recipe.set_maxthreads() can be called with the maximal number of
parallel processes. Note that this function controls only the threads that are
started afterwards.

If the recipe execution fails, the according exception will be raised whenever
one of the results is accessed.

Note

Recipes may contain an internal parallelization using the openMP [http://openmp.org] interface. Although it is recommended to leave them
untouched, they may be changed via environment variable settungs in the
cpl.Recipe.env attribute. See
http://gcc.gnu.org/onlinedocs/libgomp/Environment-Variables.html for a list
of environment variables.

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

5. The cpl.Parameter class

	
class cpl.Parameter(name)

	Runtime configuration parameter of a recipe.
Parameters are designed to handle monitor/control data and they provide a
standard way to pass information to the recipe.

The CPL implementation supports three classes of parameters: a plain
value, a value within a given range, or a value as part of an
enumeration. When a parameter is created it is created for a particular
value type. In the latter two cases, validation is performed whenever the
value is set.

Attributes:

	
value

	The value of the parameter, or None [http://docs.python.org/library/constants.html#None] if set to default

	
default

	The default value of the parameter (readonly).

	
name

	The parameter name (readonly). Parameter names are unique. They
define the identity of a given parameter.

	
context

	The parameter context (readonly). The context usually consists of the
instrument name and the recipe name, separated by a dot. The context is
used to associate parameters together.

	
range

	The numeric range of a parameter, or None [http://docs.python.org/library/constants.html#None] if the parameter range
is unlimited (readonly).

	
sequence

	A list [http://docs.python.org/library/functions.html#list] of possible values for the parameter if the parameter
are limited to an enumeration of possible values (readonly).

The following example prints the attributes of one parameter:

>>> print 'name: ', muse_scibasic.param.cr.name
name: cr
>>> print 'fullname:', muse_scibasic.param.cr.fullname
fullname: muse.muse_scibasic.cr
>>> print 'context: ', muse_scibasic.param.cr.context
context: muse.muse_scibasic
>>> print 'sequence:', muse_scibasic.param.cr.sequence
sequence: ['dcr', 'none']
>>> print 'range: ', muse_scibasic.param.cr.range
range: None
>>> print 'default: ', muse_scibasic.param.cr.default
default: dcr
>>> print 'value: ', muse_scibasic.param.cr.value
value: None

See also

Recipe.param

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

6. The cpl.FrameConfig class

	
class cpl.FrameConfig(tag, min_frames=0, max_frames=0, frames=None)

	Frame configuration.

Each FrameConfig object stores information about one the data
type a recipe can process. They are used for defining the calibration
files. However, since this information is not generally provided by CPL
recipes, it contains only dummy information, except for the MUSE recipes.

The objects stores a frame tag, a unique identifier for a certain kind of
frame, the minimum and maximum number of frames needed.

Attributes:

	
tag

	Category tag name. The tag name is used to distinguish between
different types of files. An examples of tag names is ‘MASTER_BIAS’
which specifies the master bias calibration file(s).

	
min

	Minimal number of frames, or None [http://docs.python.org/library/constants.html#None] if not specified. A frame is
required if the min is set to a value greater than 0.

	
max

	Maximal number of frames, or None [http://docs.python.org/library/constants.html#None] if not specified

	
frames

	List of frames (file names or astropy.io.fits.HDUList objects)
that are assigned to this frame type.

See also

Recipe.calib

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

7. Execution results

7.1. Result frames

	
class cpl.Result

	Calling cpl.Recipe.__call__() returns an object that contains all
result (‘production’) frames in attributes. All results for one tag are
summarized in one attribute of the same name. So, the muse_bias recipe
returns a frame with the tag MASTER_BIAS in the according attribute:

res = muse_bias(...)
res.MASTER_BIAS.writeto('master_bias')

The attribute content is either a astropy.io.fits.HDUList or a
list() of HDU lists, depending on the recipe and the call: If the
recipe produces one out put frame of a tag per input file, the attribute
contains a list if the recipe was called with a list, and if the recipe was
called with a single input frame, the result attribute will also contain a
single input frame. If the recipe combines all input frames to one output
frame, a single astropy.io.fits.HDUList es returned, independent
of the input parameters. The following examples will illustrate this:

muse_scibasic = cpl.Recipe('muse_scibasic')
...
Only single input frame, so we get one output frame
res = muse_scibasic('raw.fits')
res.PIXTABLE_OBJ.writeto('pixtable.fits')

List of input frames results in a list of output frames
res = muse_scibasic(['raw1.fits', 'raw2.fits', 'raw3.fits'])
for i, h in res.PIXTABLE_OBJ:
 h.writeto('pixtable%i.fits' % (i+1))

If we call the recipe with a list containing a single frame, we get a list
with a single frame back
res = muse_scibasic(['raw1.fits'])
res.PIXTABLE_OBJ[0].writeto('pixtable1.fits')

The bias recipe always returns one MASTER BIAS, regardless of number of
input frames. So we always get a single frame back.
muse_bias = cpl.Recipe('muse_bias')
...
res = muse_bias(['bias1.fits', 'bias2.fits', 'bias3.fits'])
res.MASTER_BIAS.writeto('master_bias.fits')

Note

This works well only for MUSE recipes. Other recipes dont provide
the necessary information about the recipe.

7.2. Run statistics

In Addition to the result frames the cpl.Result object provides the
attribute cpl.Result.stat which contains several statistics of the
recipe execution:

	
cpl.Result.return_code

	The return code of the recipe. Since an exception is thrown if the
return code indicates an error, this attribute is always set to 0.

	
cpl.Result.stat.user_time

	CPU time in user mode, in seconds.

	
cpl.Result.stat.sys_time

	CPU time in system mode, in seconds.

	
cpl.Result.stat.memory_is_empty

	Flag whether the recipe terminated with freeing all available Memory.
This information is only available if the CPL internal memory
allocation functions are used. If this information is not available,
this flag ist set to None [http://docs.python.org/library/constants.html#None].

See also

Recipe.memory_mode

7.3. Execution log

	
cpl.Result.log

	List of log messages for the recipe.

See also

cpl.logger.LogList

	
cpl.Result.error

	If one or more error was set during the recipe run, the first error is
stored in this attribute. The following errors are chained and can be
accessed with the cpl.CplError.next attribute.

Note

An error here does not indicate a failed recipe execution,
since a failed execution would result in a non-zero return code, and
an exception would be thrown.

See also

cpl.CplError

7.4. Thread control

If the recipe was called in the background (see Parallel execution), the result
object is returned immediately and is dervived from
threading.Thread [http://docs.python.org/library/threading.html#threading.Thread]. Its interface can be used to control the thread
execution:

	
cpl.Result.isAlive()

	Returns whether the recipe is still running

	
cpl.Result.join(timeout = None)

	Wait until the recipe terminates. This blocks the calling thread until
the recipe terminates – either normally or through an unhandled
exception – or until the optional timeout occurs.

When the timeout argument is present and not None [http://docs.python.org/library/constants.html#None], it should be
a floating point number specifying a timeout for the operation in
seconds (or fractions thereof). As join() always returns
None [http://docs.python.org/library/constants.html#None], you must call isAlive() after join() to decide
whether a timeout happened – if the recipe is still running, the
join() call timed out.

When the timeout argument is not present or None [http://docs.python.org/library/constants.html#None], the operation
will block until the recipe terminates.

A thread can be cpl.Result.join() ed many times.

Like in the foreground execution, the output frames may be retrieved as
attributes of the cpl.Result frame. If any of the attributes is
accessed, the calling thread will block until the recipe is terminated. If
the recipe execution raised an exception, this exception will be raised
whenever an attribute is accessed.

7.5. CPL Exceptions

	
exception cpl.CplError(retval, res, logger=None)

	Error message from the recipe.

If the CPL recipe invocation returns an error, it is converted into a
cpl.CplError exception and no frames are returned. Also, the
error is notified in the log file.

The exception is raised on recipe invocation, or when accessing the result
frames if the recipe was started in background
(cpl.Recipe.threaded set to True [http://docs.python.org/library/constants.html#True]).

Attributes:

	
code

	The CPL error code returned from the recipe.

	
msg

	The supplied error message.

	
filename

	The source file name where the error occurred.

	
line

	The line number where the error occurred.

	
log

	Log lines of the recipe that lead to this exception.

See also

cpl.logger.LogList

	
next_error

	Next error, or None [http://docs.python.org/library/constants.html#None].

	
exception cpl.RecipeCrash(bt_file)

	Recipe crash exception

If the CPL recipe crashes with a SIGSEV or a SIGBUS, the C stack trace is
tried to conserved in this exception. The stack trace is obtained with the
GNU debugger gdb. If the debugger is not available, or if the debugger
cannot be attached to the crashed recipe, the Exception remains empty.

When converted to a string, the Exception will return a stack trace
similar to the Python stack trace.

The exception is raised on recipe invocation, or when accessing the result
frames if the recipe was started in background
(cpl.Recipe.threaded set to True [http://docs.python.org/library/constants.html#True]).

Attributes:

	
elements

	List of stack elements, with the most recent element (the one that
caused the crash) at the end. Each stack element is a
collections.namedtuple() [http://docs.python.org/library/collections.html#collections.namedtuple] with the following attributes:

	
filename

	Source file name, including full path, if available.

	
line

	Line number, if available

	
func

	Function name, if available

	
params

	Dictionary parameters the function was called with. The key here is
the parameter name, the value is a string describing the value set.

	
localvars

	Dictionary of local variables of the function, if available. The
key here is the parameter name, the value is a string describing the
value set.

	
signal

	Signal that caused the crash.

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

8. Log messages

We provide CPL log messages in two different ways: via Python logging and as
a list of messages in the cpl.Result object.

For convienience, simple terminal messages and predefined log file output in a
style similar to the original CPL messages.

8.1. Python style logging

The preferred and most flexible way to do logging is the use of the
logging [http://docs.python.org/library/logging.html#module-logging] module of Python. A basic setup (similar to the style used
in esorex [http://www.eso.org/sci/software/cpl/esorex.html]) is:

import logging

log = logging.getLogger()
log.setLevel(logging.INFO)
ch = logging.FileHandler('cpl_recipe.log')
ch.setLevel(logging.INFO)
fr = logging.Formatter('%(created)s [%(levelname)s] %(name)s: %(message)s',
 '%H:%M:%S')
ch.setFormatter(fr)
log.addHandler(ch)

The default basic log name for CPL log messages in the recipes is
cpl.recipename. The log name can be changed with the logname
parameter of cpl.Recipe.__call__() to follow own naming rules, or to
separate the output of recipes that are executed in parallel:

res = [muse_focus(f, logname = 'cpl.muse_focus%02i' % (i+1), threading = True)
 for i, f in enumerate(inputfiles)]

To the basic log name the function name is appended to allow selective logging
of a certain function. The following sample line:

logging.getLogger('cpl.muse_sky.muse_sky_create_skymask').setLevel(logging.DEBUG)

will log the debug messages from muse_sky_create_skymask()
additionally to the other messages.

Note

Since the log messages are cached in CPL, they may occur with some
delay in the python log module. Also, log messages from different recipes
running in parallel may be mixed in their chronological order. The
resolution of the log time stamp is one second. The fields
logging.LogRecord.args, logging.LogRecord.exc_info and
logging.LogRecord.lineno are not set. Also, due to limitations in
the CPL logging module, level filtering is done only after the creation of
the log entries. This may cause performance problems if extensive debug
logging is done and filtered out by logging.Logger.setLevel(). In
this case the cpl.Recipe.__call__() parameter loglevel may be
used.

See also

cpl.esorex.msg and cpl.esorex.log

EsoRex like convienience logging.

8.2. Log message lists

The cpl.Result object as well as a cpl.CplError have an
attribute cpl.Result.log resp. cpl.CplError.log that contains
the list [http://docs.python.org/library/functions.html#list] of all log messages.

	
class cpl.logger.LogList

	List of log messages.

Accessing this list [http://docs.python.org/library/functions.html#list] directly will return the
logging.LogRecord [http://docs.python.org/library/logging.html#logging.LogRecord] instances.

Example:

res = muse_bias(bias_frames)
for logrecord in res.log:
 print '%s: %s' % (entry.funcname, entry.msg)

To get them formatted as string, use the error, warning,
info or debug attributes:

res = muse_bias(bias_frames)
for line in res.log.info:
 print line

	
error

	Error messages as list of str [http://docs.python.org/library/functions.html#str]

	
warning

	Warnings and error messages as list of str [http://docs.python.org/library/functions.html#str]

	
info

	Info, warning and error messages as list of str [http://docs.python.org/library/functions.html#str]

	
debug

	Debug, info, warning, and error messages as list of str [http://docs.python.org/library/functions.html#str]

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

9. cpl.esorex EsoRex legacy support

EsoRex [http://www.eso.org/sci/software/cpl/esorex.html] is a standard
execution environment for CPL recipes provided by ESO [http://www.eso.org].

9.1. Support for configuration and SOF files

	
cpl.esorex.init(source=None)

	Set up the logging and the recipe search path from the
esorex.rc file.

	Parameters:	source (str [http://docs.python.org/library/functions.html#str] or file) – Configuration file object, or string with file content.
If not set, the esorex config file ~/.esorex/esorex.rc is used.

	
cpl.esorex.load_rc(source=None)

	Read an EsoRex configuration file.

	Parameters:	source (str [http://docs.python.org/library/functions.html#str] or file) – Configuration file object, or string with file content.
If not set, the EsoRex config file
~/.esorex/esorex.rc is used.

These files contain configuration parameters for EsoRex or
recipes. The content of the file is returned as a map with the (full)
parameter name as key and its setting as string value.

The result of this function may directly set as cpl.Recipe.param
attribute:

import cpl
myrecipe = cpl.Recipe('muse_bias')
myrecipe.param = cpl.esorex.load_rc('muse_bias.rc')

	
cpl.esorex.load_sof(source)

	Read an EsoRex SOF file.

	Parameters:	source (str [http://docs.python.org/library/functions.html#str] or file) – SOF (“Set Of Files”) file object or string with SOF
file content.

These files contain the raw and calibration files for a recipe. The
content of the file is returned as a map with the tag as key and the list
of file names as value.

The result of this function may directly set as cpl.Recipe.calib
attribute:

import cpl
myrecipe = cpl.Recipe('muse_bias')
myrecipe.calib = cpl.esorex.read_sof(open('muse_bias.sof'))

Note

The raw data frame is silently ignored wenn setting
cpl.Recipe.calib for MUSE recipes. Other recipes ignore the raw
data frame only if it was set manually as cpl.Recipe.tag or in
cpl.Recipe.tags since there is no way to automatically
distinguish between them.

9.2. Convienence logging control

	
cpl.esorex.msg = <cpl.esorex.CplLogger object>

	This variable is a CplLogger instance that provides a convienience
stream handler similar to the terminal logging functionality of the CPL. It
basically does the same as:

import logging

log = logging.getLogger()
log.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.OFF)
ch.setFormatter(logging.Formatter('[%(levelname)7s] %(message)s'))
log.addHandler(ch)

The following attributes control the format of the terminal messages:

	
CplLogger.level

	Log level for output to the terminal. Any of
[DEBUG, INFO, WARN, ERROR, OFF].

	
CplLogger.format

	Output format.

See also

logging.LogRecord attributes [http://docs.python.org/library/logging.html#logrecord-attributes]

Key mappings in the logging output.

	
CplLogger.time

	If True [http://docs.python.org/library/constants.html#True], attach a time tag to output messages.

	
CplLogger.component

	If True [http://docs.python.org/library/constants.html#True], attach the component name to output messages.

	
CplLogger.threadid

	If True [http://docs.python.org/library/constants.html#True], attach a thread tag to output messages.

	
cpl.esorex.log = <cpl.esorex.CplFileLogger object>

	This variable is a CplFileLogger instance that provides a convienience
file handler similar to the file logging functionality of the CPL. It
basically does the same as:

import logging

log = logging.getLogger()
log.setLevel(logging.INFO)
ch = logging.FileHandler(filename)
ch.setLevel(logging.INFO)
ch.setFormatter(logging.Formatter('%(asctime)s [%(levelname)7s] %(funcName)s: %(message)s'))
log.addHandler(ch)

The following attributes control the format of the log file messages:

	
CplLogger.dir

	Directory name that is prepended to the log file name.

	
CplLogger.level

	Log level for output to the terminal. Any of
[DEBUG, INFO, WARN, ERROR, OFF].

	
CplLogger.format

	Output format.

See also

logging.LogRecord attributes [http://docs.python.org/library/logging.html#logrecord-attributes]

Key mappings in the logging output.

	
CplLogger.time

	If True [http://docs.python.org/library/constants.html#True], attach a time tag to output messages.

	
CplLogger.component

	If True [http://docs.python.org/library/constants.html#True], attach the component name to output messages.

	
CplLogger.threadid

	If True [http://docs.python.org/library/constants.html#True], attach a thread tag to output messages.

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Python bindings for CPL

10. cpl.dfs DFS header parsing

	
class cpl.dfs.ProcessingInfo(source, recno=-1)

	Support for reading input files and parameters from the FITS
header of a CPL processed file.

This is done through the FITS headers that were written by the DFS function
called within the processing recipe.

	
name

	Recipe name

	
version

	Recipe version string

	
pipeline

	Pipeline name

	
cpl_version

	CPL version string

	
tag

	Tag name

	
calib

	Calibration frames from a FITS file processed with CPL.
The result of this function may directly set as cpl.Recipe.calib
attribute:

import cpl
myrecipe = cpl.Recipe('muse_bias')
myrecipe.calib = cpl.dfs.ProcessingInfo('MASTER_BIAS_0.fits').calib

Note

This will not work properly for files that had
astropy.io.fits.HDUList inputs since they have assigned a
temporary file name only.

	
raw

	Raw (input) frames

Note

This will not work properly for files that had
astropy.io.fits.HDUList inputs since they have assigned a
temporary file name only.

	
param

	Processing parameters.
The result of this function may directly set as cpl.Recipe.param
attribute:

import cpl
myrecipe = cpl.Recipe('muse_bias')
myrecipe.param = cpl.dfs.ProcessingInfo('MASTER_BIAS_0.fits').param

	
md5sum

	MD5 sum of the data portions of the output file (header keyword
‘DATAMD5’).

	
md5sums

	MD5 sums of the input and calibration files. dict [http://docs.python.org/library/stdtypes.html#dict] with the
file name as key and the corresponding MD5 sum as value.

Note

Due to a design decision in CPL, the raw input files are not
accompanied with the MD5 sum.

	
ProcessingInfo.__init__(source, recno=-1)

	

	Parameters:	
	source (str [http://docs.python.org/library/functions.html#str] or astropy.io.fits.HDUList
or astropy.io.fits.PrimaryHDU or
astropy.io.fits.Header) – Object pointing to the result file header

	recno (int [http://docs.python.org/library/functions.html#int]) – Record number. Optional. If not given, the last record
(with the highest record number) is used.

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Python bindings for CPL

11. Restrictions for CPL recipes

Not every information can be retrieved from recipes with the standard CPL
functions. Only MUSE recipes provide additional interfaces that allow the
definition of input, calibration and output frames.

All other interfaces will have the following restrictions:

	The Recipe.calib attribute is not filled with templates for
calibration frames. After recipe creation, this attribute is empty. Also, no
check on the required calibration frames may be done before calling the
recipe. Anything that is set here will be forwarded to the recipe.

	In the cpl.esorex support, directly assigning the recipe calibration
files from the SOF file with
recipe.calib = cpl.esorex.read_sof('file') will also put the
raw input file into Recipe.calib unless Recipe.tags
and/or Recipe.tag are set manually. The standard recipe
interface does not provide a way to distinguish between raw input and
calibration files.

	The Recipe.tags attribute is set to None [http://docs.python.org/library/constants.html#None].

	The Recipe.tag attribute is not initially set. If this
attribute is not set manually, the tag is required when executing the
attribute.

	Accessing the attribute Recipe.output() raises an exception.

11.1. Technical Background

CPL recipes register all their parameter definitions with the CPL function
cpl_parameterlist_append(). All registered parameters may be retrieved
from the recipe structure as a structure which contains all defined
parameters.

For frames, such a mechanism does not exist, although components of the
infrastructure are implemented. The CPL modules cpl_recipeconfig allows
the definition of input, raw, and output frames for a recipe. However, this
module is only half-way done, has no connection to the recipe definition and
is not mandantory for CPL recipes. The MUSE pipeline recipes (with the
exception of those contributed by ESO) implement a central frameconfig
registry which allows to access this meta information from the Python
interface.

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	Python bindings for CPL

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 cpl	

 	
 	
 cpl.dfs	

 	
 	
 cpl.esorex	

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 modules |

 	Python bindings for CPL

Index

 _
 | C
 | D
 | E
 | F
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	

 	__author__ (cpl.Recipe attribute)

 	__call__() (cpl.Recipe method)

 	__copyright__ (cpl.Recipe attribute)

 	__email__ (cpl.Recipe attribute)

 	

 	__file__ (cpl.Recipe attribute)

 	__init__() (cpl.dfs.ProcessingInfo method)

 	

 	(cpl.Recipe method)

 	__name__ (cpl.Recipe attribute)

C

 	

 	calib (cpl.dfs.ProcessingInfo attribute)

 	

 	(cpl.Recipe attribute)

 	code (cpl.CplError attribute)

 	component (cpl.esorex.CplLogger attribute), [1]

 	context (cpl.Parameter attribute)

 	cpl (module), [1], [2], [3], [4], [5], [6]

 	cpl.dfs (module)

 	

 	cpl.esorex (module)

 	cpl.Result (class in cpl)

 	cpl_description (cpl.Recipe attribute)

 	cpl_version (cpl.dfs.ProcessingInfo attribute)

 	

 	(cpl.Recipe attribute)

 	CplError

D

 	

 	debug (cpl.logger.LogList attribute)

 	default (cpl.Parameter attribute)

 	

 	description (cpl.Recipe attribute)

 	dir (cpl.esorex.CplLogger attribute)

E

 	

 	elements (cpl.RecipeCrash attribute)

 	env (cpl.Recipe attribute)

 	

 	
 environment variable

 	

 	MALLOC_CHECK_

 	PYTHONPATH

 	error (cpl.cpl.Result attribute)

 	

 	(cpl.logger.LogList attribute)

F

 	

 	filename (cpl.CplError attribute)

 	

 	(cpl.RecipeCrash attribute)

 	format (cpl.esorex.CplLogger attribute), [1]

 	FrameConfig (class in cpl)

 	

 	frames (cpl.FrameConfig attribute)

 	func (cpl.RecipeCrash attribute)

I

 	

 	info (cpl.logger.LogList attribute)

 	init() (in module cpl.esorex)

 	

 	isAlive() (cpl.cpl.Result method)

J

 	

 	join() (cpl.cpl.Result method)

L

 	

 	level (cpl.esorex.CplLogger attribute), [1]

 	line (cpl.CplError attribute)

 	

 	(cpl.RecipeCrash attribute)

 	list() (cpl.Recipe static method)

 	load_rc() (in module cpl.esorex)

 	

 	load_sof() (in module cpl.esorex)

 	localvars (cpl.RecipeCrash attribute)

 	log (cpl.cpl.Result attribute)

 	

 	(cpl.CplError attribute)

 	(in module cpl.esorex)

 	LogList (class in cpl.logger)

M

 	

 	MALLOC_CHECK_

 	max (cpl.FrameConfig attribute)

 	md5sum (cpl.dfs.ProcessingInfo attribute)

 	md5sums (cpl.dfs.ProcessingInfo attribute)

 	memory_dump (cpl.Recipe attribute)

 	

 	memory_is_empty (cpl.cpl.Result.stat attribute)

 	memory_mode (cpl.Recipe attribute)

 	min (cpl.FrameConfig attribute)

 	msg (cpl.CplError attribute)

 	

 	(in module cpl.esorex)

N

 	

 	name (cpl.dfs.ProcessingInfo attribute)

 	

 	(cpl.Parameter attribute)

 	

 	next_error (cpl.CplError attribute)

O

 	

 	output (cpl.Recipe attribute)

 	

 	output_dir (cpl.Recipe attribute)

P

 	

 	param (cpl.dfs.ProcessingInfo attribute)

 	

 	(cpl.Recipe attribute)

 	Parameter (class in cpl)

 	params (cpl.RecipeCrash attribute)

 	path (cpl.Recipe attribute)

 	

 	pipeline (cpl.dfs.ProcessingInfo attribute)

 	ProcessingInfo (class in cpl.dfs)

 	PYTHONPATH

R

 	

 	range (cpl.Parameter attribute)

 	raw (cpl.dfs.ProcessingInfo attribute)

 	Recipe (class in cpl)

 	

 	RecipeCrash

 	return_code (cpl.cpl.Result attribute)

S

 	

 	sequence (cpl.Parameter attribute)

 	set_maxthreads() (cpl.Recipe static method)

 	

 	signal (cpl.RecipeCrash attribute)

 	sys_time (cpl.cpl.Result.stat attribute)

T

 	

 	tag (cpl.dfs.ProcessingInfo attribute)

 	

 	(cpl.FrameConfig attribute)

 	(cpl.Recipe attribute)

 	tags (cpl.Recipe attribute)

 	temp_dir (cpl.Recipe attribute)

 	

 	threaded (cpl.Recipe attribute)

 	threadid (cpl.esorex.CplLogger attribute), [1]

 	time (cpl.esorex.CplLogger attribute), [1]

U

 	

 	user_time (cpl.cpl.Result.stat attribute)

V

 	

 	value (cpl.Parameter attribute)

 	

 	version (cpl.dfs.ProcessingInfo attribute)

 	

 	(cpl.Recipe attribute)

W

 	

 	warning (cpl.logger.LogList attribute)

 Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Python bindings for CPL »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2015, Ole Streicher.
 Created using Sphinx 1.3.4.

_static/comment-close.png

_static/up.png

_static/minus.png

_static/down-pressed.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

